Monatshefte für Chemie 104, 48—56 (1973) © by Springer-Verlag 1973

Röntgenographische Untersuchungen im Dreistoff V-P-C

Von

H. Boller

Aus dem Institut für physikalische Chemie der Universität Wien, Österreich

Mit 2 Abbildungen

(Eingegangen am 15. März 1972)

X-Ray Investigation in the Ternary System V-P-C

The phase equilibria in the ternary system V—P—C are investigated at 1000 °C. A new vanadium phosphide, V_4P_3 , has been identified (Nb₄As₃-type, space group Cmcm, a = 3.261, b = 13.23, c = 17.30 Å). Five ternary phases have been found: Besides V_3PC_{1-x} (filled up Re₃B-type) and V_2PC (H-phase) already described, there are the phases $V_{5+x}P_3C_{1-x}$ (filled up D8₈-type), orthorhombic $V_{\sim 6}P_3C_{1-x}$, and V_4P_2C . The crystal structure of V_4P_2C has been determined (space group P62m, a = 9.567, c = 3.166 Å). V_4P_2C represents a new structure type, which can be described as a dense packing of trigonal prismatic and octahedral building elements.

Es wird die Aufteilung der Phasenfelder bei 1000 °C im Dreistoff V—P—C ermittelt. Ein neues Vanadinphosphid V₄P₃ mit Nb₄As₃-Typ (Raumgruppe Cmcm, a = 3,261, b = 13,23, c = 17,30 Å) wird sichergestellt. Im Dreistoff existieren neben den bereits beschriebenen Kristallarten V₃PC_{1-x} (aufgefüllter Re₃B-Typ) und V₂PC (H-Phase) noch die Phasen V_{5+x}P₃C_{1-x} (aufgefüllter D8₈-Typ), das orthorhombische V_{~6}P₃C_{1-x} und V₄P₂C. Die Kristallstruktur von V₄P₂C wird ermittelt (Raumgruppe P62m, a = 9,567, c = 3,166 Å). V₄P₂C repräsentiert einen neuen Strukturtyp, der als dichte Packung trigonal prismatischer und oktaedrischer Bauelemente aufgefaßt werden kann.

Einleitung

Die Untersuchung des Dreistoffes V—As—C, über die bereits früher berichtet worden war^{1, 2}, bewies die Existenz dreier ternärer Phasen und führte auch zur Auffindung einiger neuer binärer Vanadinarsenide. Es war daher von Interesse, das analoge System V—P—C eingehender zu untersuchen, zumal die Existenz von zwei Komplexcarbiden, V_3PC^3 und V_2PC^4 , bereits sichergestellt war. Auch hatte sich bei den orientierenden Versuchen bald herausgestellt, daß sowohl das Randsystem V—P wie auch der Dreistoff selbst wesentlich komplizierter sind, als auf Grund der bisherigen Kenntnisse angenommen werden konnte.

Der Aufbau des Randsystems V—C ist ziemlich gut bekannt⁵. Kristallchemische Daten über den Zweistoff V—P sind kürzlich von Lundström⁶ zusammengestellt worden. Danach sind die Phasen V₃P, V₁₂P₇, VP und VP₂ beschrieben. Über eine Einkristalluntersuchung an V₁₂P₇ berichteten vor kurzem Olofson und Ganglberger⁷. Im Zweistoff P—C scheint es bei hoher Temperatur keine stabilen Verbindungen zu geben.

Experimenteller Teil

Folgende Ausgangskomponenten wurden eingesetzt: Vanadinpulver (Fa. Starck), roter Phosphor (Fa. Merck) und Reaktorgraphit.

Die Herstellung der Proben erfolgte wie üblich durch mehrtägiges Sintern der pulverförmigen Komponenten in Quarzampullen bei 1000 °C. Eine zweite Homogenisierungsglühung (48 Stdn.) erwies sich als zur Gleichgewichtseinstellung unbedingt notwendig.

Die röntgenographische Identifizierung geschah durch Pulver- (Filmund Diffraktometer-) bzw. Einkristallaufnahmen.

Das System V-P

Die bisher beschriebenen Phasen V_3P , $V_{12}P_7$ und VP konnten bestätigt werden. Darüber hinaus wurden zwei weitere Kristallarten beobachtet: V_4P_3 und $V_{\sim 2,4}P$. Dagegen ist VP₂ offensichtlich bei dieser Temperatur nicht mehr stabil.

Die Phase V_4P_3 : Das linienreiche Pulverdiagramm dieser bei etwa 57 At% Vanadin rein auftretenden Phase zeigt eine gewisse Ähnlichkeit mit jenem von V_4As_3 , dessen Struktur erst kürzlich aufgeklärt worden ist⁸. Es gelang auch, eine Diffraktometeraufnahme von V_4P_3 analog zu V_4As_3 zu indizieren. Die Gitterparameter der orthorhombischen Elementarzelle (Raumgruppe Cmcm- D_{2h}^{27}) sind:

$$a = 3,261$$
 Å, $b = 13,23$ Å, $c = 17,30$ Å.

Die Gegenüberstellung der beobachteten und berechneten Pulverintensitäten (Tab. 1) macht die Isotypie der beiden Phasen sehr wahrscheinlich. Die Rechnung wurde mit den für V_4As_3 bestimmten Atomparametern durchgeführt.

Der Dreistoff V—P—C

Wie Abb. 1 erkennen läßt, treten fünf ternäre Kristallarten auf: Neben den schon früher beschriebenen Phasen V_3PC_{1-x} (aufgefüllter Re₃B-Typ)³ und V_2PC (H-Phase)⁴ bestehen noch die Phasen $V_{5+x}P_3C_{1-x}$, V_4P_2C und ein weiteres relativ kohlenstoffarmes Komplexcarbid, X, mit der ungefähren Zusammensetzung $V_6P_3C_{0.6}$.

Monatshefte für Chemie, Bd. 104/1

H. Boller:

/1 7 T)	10 ⁴ ·	$\sin^2\vartheta$	Intens	sität
(nĸı)	beob.	ber.	beob.	ber.
······	·····			
(023))		314)		(2)
(020)	315	317.	S	$\langle \overline{0} \rangle$
(001)		453		(Õ
(021)	546	543	ms	4
(010) (041)		563		0
(110)		592		ů
(110)		612)		(29
(042)	616	622	mst	19
(025)	629	631	m	8
(020) (112)	670	671	SS	0
(006)		714		Ő
(043)		721		õ
(113)	775	770	ms	ő
(026)	851	849	m	14
(020)	001	860)		(3)
(130)	865	863	\mathbf{ms}	
$(130)_{j}$	886	883	m	16
(114)	912	909	ms	8
(111) (132)	928	943	m*	2
(102) (045))	020	1038)		(3
(133)	1040	1042	S	łő
$(100)_{j}$	1088	1012)	st	76
(027)	1105	1107	ms	1
(134)	1182	1180	sst	100
(060)	1221	1221	s	1
(061)	1240	1241	s	3
(046)	1257	1256	m	13
(018)	1269	1269	m+	17
(062)	1303	1301	mst	40
(116)		1306		0
(135)	1360	1359	ms	13
(100) (063)	1000	1400)	1110	(14
(028)	1403	1404 }	st^+*	$\frac{1}{29}^{}$
(150)	2200	1406		12^{-1}
(151)	1430	1426	\mathbf{mst}	63
(152)	1487	1485	s	3
(047)	1520	1514	ms	1
(064)	1543	1538	\mathbf{ms}	8
(117)	1561	1563	s	2
(136)		1577)		(24)
(153)	1581	1584	m	${12}$
(065)ĺ	1794	1717)	m_	13
(154)∫	1/44	1723 <i>)</i>	111	13
$(029)^{-1}$	1744	1741	\mathbf{ms}	10
(048)	1813	1811	S	1

Tabelle 1. Auswertung einer Diffraktometeraufnahme von V_4P_3 und Intensitätsberechnung (CuK α -Strahlung)

(hkl)	$10^4 \cdot \sin^2 \vartheta$		Inten	sität
	beob.	ber.	beob.	ber.
(137)	1834	1835	st	52
(118)	_	1861		0
(155)	1905	1901	s	2
(066)		1935	_	0
(00.10)	1980	1982	s	1
$\left. \begin{array}{c} (02.10) \\ (156) \end{array} \right\}$	2116	$2118 \\ 2120 \}$	\mathbf{ms}	$\begin{cases} 6\\0 \end{cases}$
(138) (149)	2148	2132 2148	ms	$\left\{ egin{array}{c} 2 \\ 4 \end{array} ight.$
(080) (081)	2180	$egin{array}{c} 2171 \ 2191 \ \end{array}$	s*	$\begin{cases} 6 \\ 0 \end{cases}$
$(067)^{-1}$		$2192^{'}$		0
(119)		2198	_	0
(170))		2220)		(1
(200)	2232	2232	\mathbf{st}	{39
(171)		2240)		$\lfloor 2$
(082)	2250	2250	s	1
(172)	2298	2299	8	1
(202)		2311		0
(083)	2353	2349	\mathbf{m}	5

Fortsetzung (I	abelle 1
----------------	----------

* Koinzidenz mit VP.

Ein charakteristisches Merkmal dieses Dreistoffes ist das Gleichgewicht VP—C, das die metallarme Hälfte des Systems, die keine Verbindungen enthält, abschneidet. Im analogen Dreistoff V—As—C existiert diese Konnode nicht. Die Phasenfelder der vanadinarmen Seite des Systems werden dort vielmehr von der H-Phase mit beherrscht. Diesem Sachverhalt entspricht eine geringere relative Stabilität der H-Phase V₂PC, die sich auch darin äußert, daß diese Kristallart nur schwierig homogen zu erhalten ist.

Es sei noch erwähnt, daß V_2C hier immer in der hexagonalen Form erhalten wurde. Das ζ -Carbid trat nicht auf.

Die Phase $V_{5+x}P_3C_{1-x}$: Diese Phase kristallisiert im aufgefüllten $Mn_5Si_3(D8_8)$ -Typ. Das Pulverdiagramm ist völlig analog dem von $V_5P_3N_{1-x}^4$, weshalb auf seine Wiedergabe verzichtet wird. Die Gitterparameter zeigen einen interessanten Verlauf im homogenen Bereich: Mit abnehmendem Kohlenstoffgehalt und gegen die vanadinreiche Seite hin nehmen diese Parameter zu. Die Werte variieren zwischen: a = 6,88Å, c = 4,77Å (kohlenstoffreich) und a = 6,94Å, c = 4,82Å (kohlenstoffarm, vanadinreich). Diese Volumvergrößerung von etwa 3% spricht für einen zusätzlichen Vanadineinbau. Der phänomenologische Sachverhalt kann in erster Näherung durch die Formel $V_{5+x}P_3C_{1-x}$ wiedergegeben

H. Boller:

werden. Mit dieser Schreibweise soll jedoch keine Substitution C—V an den Oktaederplätzen ausgedrückt werden, die wegen des Radienunterschiedes wenig wahrscheinlich ist. Das wahre Substitutionsschema ist sicher komplizierter (etwa eine parallele Substitution C—P und P—V).

Die Phase X: Eine im wesentlichen aus dieser Phase bestehende Probe wurde im Hochfrequenzofen vorsichtig niedergeschmolzen. Auf

Abb. 1. Die Phasenfeldaufteilung im Dreistoff V-P-C bei etwa 1000 °C

diese Weise gelang es, nadelförmige Einkristalle zu erhalten. DK- und Weissenbergaufnahmen um die Längsachse dieser Kristalle ergaben folgende orthorhombische Elementarzelle:

$$a = 17,12$$
 Å, $b = 3,218$ Å, $c = 13,04$ Å.

Die systematischen Auslöschungen: (hkl) nur mit h = 2n führen auf die wahrscheinlichen Raumgruppen D_2^2 , C_{2v}^2 , C_{2v}^4 und D_{2h}^5 .

Die Phase V_4P_2C : Versuche, Einkristalle dieses neuen Komplexcarbides herzustellen, führten nicht zum Erfolg, da die Phase bei Temperaturen über 1100 °C nicht mehr stabil ist. Es gelang jedoch, das Pulverdiagramm mit der hexagonalen Zelle:

$$a=9,56_7$$
 Å, $b=3,16_6$ Å, $c/a=0,331$

(hkil)	$10^4 \cdot \sin^2 \vartheta$		Intensität	
	beob.	ber.	beob.	ber.
(0001)	592	592	2	1.6
$(12\overline{3}0)$	606	605	5	3.9
$(10\overline{1}1)$	678	677	4	3.2
(3030)		778	_	0.2
$(11\overline{2}1)$	851	850	2	2.3
$(20\overline{21})$	938	937	12	12
$(22\overline{4}0)$	1034	1037	4	3,1
$(13\overline{4}0)$	1125	1124	33	31
$(12\overline{3}1)$	1198	1196	100	100
$(30\overline{3}1)$	1371	1369	7	6,4
$(40\overline{4}0)$	1386	1383	32	30
$(22\overline{4}1))$	1001	1629)	0.0	(17,3
(2350)	1634	1642	26	4,7
$(13\overline{4}1)$	1716	1714^{-1}	7	6,3
$(14\overline{5}0)$	1819	1815	2	2,5
$(40\overline{4}1)$	·	1975		0,0
$(50\overline{5}0)$	2164	2161	4	4,3
$(23\overline{5}1)$	2235	2233	6	5,3
$(33\overline{6}0)$	2334	2334	7	6,1
$(00\overline{0}2)$	2367	2364	19	14
$(14\overline{5}1)$	2408	2406	5	4,5
$(24\overline{6}0)$	_	2420		0,3
$(10\overline{1}2)$		2454		0,0
$(11\overline{2}2)$		2627		0,0
$(15\overline{6}0)$	2681	2679	2	1,9
$(20\overline{2}2)$		2713		0,0
$(50\overline{5}1)$	2755	${\bf 2752}$	1	0,6
$(33\overline{6}1)$	2925	2925	14	11,2
$(12\overline{3}2)$	2970	2969	0,5	0,6
$(24\overline{6}1)$	3012	3011	7	5,5
$(60\overline{6}0)$	3113	3111	2	1,7
$(30\overline{3}2)$		3145		0,0
(3470)	3200	3198	5	3,8
$(15\overline{6}1)$	3272	3270	2	1,7
(2570)		3371		0,3
$(22\overline{4}2)$	3402	3401	1	0,9
$(13\overline{4}2)$	3488	3487	13	8,3
(6061)	3704	3703	11	$\begin{cases} 7,1\\1,0 \end{cases}$
(1670)	0.00	3716		(1,9
(4042)	3749	.3747	14	10,2
(3471)	3790	3789	3	1,9
(2571) (25茶2)	3964	3962	1	1,0
(2352)	4009	4010	z	1,9
(4480)	4140	4149	2	1.0
(4152)	4178	4179	T	1,5

Tabelle 2. Auswertung einer Diffraktometeraufnahme von V_4P_2C und Intensitätsberechnung (CuK α -Strahlung)

53

Tabelle 2 (Fortsetzung)

(hkil)	$10^4 \cdot \sin^2 \vartheta$		Intensität	
	beob.	ber.	beob.	\mathbf{ber} .
(1070))				(0.0
(7070) (2590) (4235	4235	3	
(3080)J (1671)	1900	4207	. K	(3,1
(1071)	4508	401	Ð	4,7
(2080)	4597	4494		0,7
(2022) (22720)	4027	4929	2	2,1
(3304) (44页1)	4098	4097	4	3,0 0,5
(4481) (4929)		4740		0,0
(4202) (7071))		4/04		0,2
(7071)	4826	4826	3	
(3081)]	4096	1096	4	(1,0
(1780) (15789)	4920	4920	4	ə,0 1 4
(1004) (96页1)	5044	0045 5095	2	1,4
(2081) (イズびの)	5087	5085	0	5,4
(4090) (0072)	9271	0271 2010	1	0,9
(UUU3) (10T2)		0018 5404		0,1
(1013)		0404 8445		0,1
(3690)		0440 5450		0,1
(6062)	5475	5476	2	1,5
(1781)	_	5518		0,5
(8080) (84 5 0)	FFRA	0001 5500		0,0
(3472)	ə564	5562	3	3,0
(1123)		5586	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,1
(2043) (25772)	5671	5673	0,5	0,5
(2572)	5737	5738	0,5	0,3
(2790)	5790	5791	0,5	0,8
(4091)	5863	5803	4	3,9
(1233)	5925	5925	7	7,2
(3691) (19 5 2)		6037		0,4
(1672)	6083	6081	2	1,9
(3033)	6105	6105	1	0,7
(8081)		6123		0,0
(1890)		6309		0,6
(2243)	6355	6357	2	2,0
(2791)	0381	0382	4	3,0
(3143)		6451	0,5	0,8
(55100)	0710	6482		0,2
(4482)	0012	0013	Z	1,9
(46100)		0909		0,2
(7072) (5000)	6600	6600	4	
(0382)) (4072)		6710		[3,9 0.0
(4043) (97700)	6007	0710	1	0,0
(37100) (9659)	0827	0828	1	1,4
(2082) (1971)	0802	0802	1 9	1,0
(1891) (9959)	6044	6060	Э 1	ə,∠ 19
(2303) (00回0)	7000	0900	1 9	1,4
(9090)	1000	1001	4	⊿,ə

(hkil)	$10^4 \cdot \sin^2 \vartheta$		Intensität	
	beob.	ber.	beob.	ber.
$(55\overline{10}1)$	7074	7074	2	2,0
$(41\overline{5}3)$	7141	7142	1	1,1
$(46\overline{10}1)$	7162	7161	1	2,1
$(28\overline{10}0)$		7260		0,3
$(71\overline{9}2)$	7288	7291	6	5,8
$(37\overline{10}1)$	7418	7419	5	5.3

Tabelle 2 (Fortsetzung)

zu indizieren. Systematische Auslöschungen wurden nicht beobachtet. Wegen der kurzen c-Achse und der analogen Abfolge der Intensitäten von (hki0)- und (hki2)- bzw. (hki1)- und (hki3)-Reflexen kann angenom-

Abb. 2. Die Kristallstruktur von V₄P₂C, projiziert auf die x-y-Ebene

men werden, daß alle Atome in z = 0 und $z = \frac{1}{2}$ liegen. Außerdem ist auf Grund der kristallchemischen Regelmäßigkeiten von Übergangsmetallphosphiden und Komplexcarbiden zu erwarten, daß sich der Phosphor in überwiegend trigonal prismatischer, der Kohlenstoff hingegen in oktaedrischer Vanadinumgebung befinden. Mit der pyknometrisch bestimmten Dichte von 5,48 g/cm³ sind drei Formeleinheiten V₄P₂C je Elementarzelle vereinbar.

Mit Hilfe dieser Annahmen konnte ein Strukturmodell für V_4P_2C in der Raumgruppe P62m- D_{3h}^3 erstellt werden, das die diffraktometrisch gemessenen Pulverintensitäten gut wiedergibt (Tab. 2). Die kristallographischen Daten von V_4P_2C sind in Tab. 3 zusammengestellt. Die interatomaren Abstände entsprechen den Erwartungswerten (mittlere Abstände V—P: 2,4 und V—C: 2,0 Å).

Raumgruppe: P62m — D_{3h}					
6 V ₁ in Punktlage 6 k):	$x = 0.21, \ y = 0.45$				
$3 V_{II}$ in Punktlage 3 f):	x = 0,53				
$3 V_{III}$ in Punktlage 3 f):	x = 0.81				
$3 P_I$ in Punktlage $3 f$:	x = 0,285				
2 P _{II} in Punktlage 2 c);					
$1 P_{III}$ in Punktlage 1 b);					
3 C in Punktlage $3 g$):	x = 0,33				

Tabelle 3. Atomparameter von V_4P_2C

_

. 9

Die Kristallstruktur von V_4P_2C (Abb. 2) stellt einen neuen Strukturtyp dar, in dem ähnlich wie in V_3PC oder V_2PC die für Übergangsmetallphosphide und -carbide charakteristischen Bauprinzipien vereinigt sind. Neben stehenden und liegenden, von Phosphoratomen zentrierten trigonalen Vanadinprismen und der oktaedrischen [V₆C]-Konfiguration findet man auch einen innenzentrierten, verzerrten Vanadinwürfel, wie er in vielen übergangsmetallreicheren Phosphiden und Arseniden beobachtet wird. Diese hier angeführten Gruppierungen sind freilich nicht als selbständige Bauelemente aufzufassen, sondern vielmehr als Bruchstücke einer kondensierten Struktur, wie das ja allgemein für solche Phasen charakteristisch ist.

Literatur

¹ H. Boller und H. Nowotny, Mh. Chem. 97, 1053 (1966).

² H. Boller und H. Nowotny, Mh. Chem. 98, 2127 (1967).

³ H. Boller und H. Nowotny, Mh. Chem. 99, 721 (1968).

⁴ H. Boller und H. Nowotny, Mh. Chem. 99, 672 (1968).

⁵ E. Rudy, St. Windisch und C. E. Brukl, Planseeber. Pulvermet. 16, 1 (1968).

⁶ T. Lundström, Ark. Kemi 31, 227 (1969).

7 O. Olojson und E. Ganglberger, Acta Chem. Scand. 24, 2389 (1970).

⁸ K. Yvon und H. Boller, Mh. Chem. 103, 1643 (1972).